Suberoyl bis-hydroxamic acid (Suberohydroxamic acid; SBHA) 是竞争性且可透过细胞的 HDAC1 和 HDAC3 抑制剂,ID50 值分别为 0.25 μM 和 0.30 μM。Suberoyl bis-hydroxamic acid 使肿瘤细胞易于凋亡 (apoptosis) 并促进线粒体凋亡途径。Suberoyl bis-hydroxamic acid 可用于甲状腺髓样癌 (MTC) 的研究。
HDAC-IN-44是一种HDAC抑制剂,IC50值为61.2 nM。HDAC-IN-44对多种癌细胞系显示出高抗癌活性[1]。
Remetinostat (SHP-141) 是一种基于羟肟酸的组蛋白去乙酰化酶 (HDAC) 的抑制剂,目前正在开发应用与治疗皮肤T细胞淋巴瘤[1]。
NCC-149是一种选择性HDAC8抑制剂,可用于神经分化研究[1]。
CDK/HDAC-IN-2是一种有效的HDAC/CDK双重抑制剂,对于HDAC1、HDAC2、HDAC3、HDAC6,8、CDK1、CDK2、CDK4,6,7,IC50分别为6.4、0.25、45、>1000、8.63、0.30、>1000 nM。CDK/HDAC-IN-2具有良好的抗增殖活性。CDK/HDAC-IN-2诱导细胞凋亡和细胞周期阻滞于G2/M期。CDK/HDAC-IN-2显示出强大的抗肿瘤功效[1]。
HDAC6降解剂-3是一种通过三元复合物形成和泛素-蛋白酶体途径产生的有效和选择性HDAC6的降解剂,DC50值为19.4nM。HDAC6降解剂-3对HDAC6和HDAC1的IC50分别为4.54nM和0.647μM。HDAC6降解剂-3导致α-微管蛋白的强烈超乙酰化[1]。
c-Met/HDAC-IN-2是一种高效的c-Met和HDAC双重抑制剂,HDAC1和c-Met的IC50s分别为18.49 nM和5.40 nM。c-Met/HDAC-IN-2对某些癌细胞系具有抗增殖活性。c-Met/HDAC-IN-2可引起HCT-116细胞G2/M期阻滞并诱导细胞凋亡。c-Met/HDAC-IN-2可用于研究抗癌耐药性[1]。
HDAC-IN-31是一种高效、选择性和口服活性的HDAC抑制剂,对于HDAC1、HDAC2、HDAC3、HDAC8,其IC50s分别为84.90、168.0、442.7、>10000 nM。HDAC-IN-31在G2/M期诱导细胞凋亡和细胞周期阻滞。HDAC-IN-31具有良好的抗肿瘤cc彩球网。HDAC-IN-31具有研究弥漫性大B细胞淋巴瘤的潜力【1】。
间羧基肉桂酸双羟肟是一种有效的HDAC抑制剂,HDAC1和HDAC3在体外的ID50值分别为10和70 nM【1】。间羧基肉桂酸双羟肟也可诱导细胞凋亡并抑制肿瘤生长[2]。
PTG-0861(JG-265)是一种新型高效、选择性HDAC6抑制剂,IC50为5.92 nM,选择性是其他HDACs的36倍以上。PTG-0861(JG-265)显示HDAC6细胞靶向结合,EC50为0.59μm(ELISA),体外和细胞选择性优于HDAC6选择性抑制剂西他林他汀(ACY-241)。PTG-0861(JG-265)对多种血癌细胞系(如MV4-11、MM1S)具有一定的抑制cc彩球网,同时对非恶性细胞和CD-1小鼠的细胞毒性有限。PTG-0861(JG-265)具有良好的体外药代动力学,在细胞和体内均具有良好的安全性。
HDAC6-IN-6(化合物6a)是一种有效的BBB穿透HDAC6抑制剂,IC50为0.025μM。HDAC6-IN-6对aβ1-42自聚集和乙酰胆碱酯酶具有较强的抑制活性,IC50值分别为3.0和0.72μM。HDAC6-IN-6可促进神经轴突生长,而无明显神经毒性【1】。
Pivanex (AN-9) 是丁酸的衍生物,是 HDAC 的抑制剂,具有抗转移和抗血管生成的活性。Pivanex (AN-9) 可下调bcr-abl 蛋白,增强凋亡。
HDAC-IN-29(化合物13b)是一种有效的pan-HDAC抑制剂。HDAC-IN-29具有抗肿瘤活性[1]。
HDAC-IN-38(化合物13)是一种有效的HDAC抑制剂。HDAC-IN-38对HDAC1、2、3、5、6和8表现出类似的微摩尔抑制活性。HDAC-IN-38增加脑血流量(CBF),减轻认知障碍,改善海马萎缩。HDAC-IN-38还可增加组蛋白乙酰化水平(H3K14或H4K5)[1]。
4-碘-SAHA(1k)是一种口服活性I类和II类组蛋白去乙酰化酶(HDAC)抑制剂,对Skbr3、HT29、U937、JA16和HL60细胞系的EC50分别为1.1、0.95、0.12、0.24、0.85和1.3μM。4-碘-SAHA(1k)可用于癌症研究[1]。
Corin 是组氨酸赖氨酸特异性去甲基化酶 (LSD1) 和组氨酸脱乙酰化酶 (HDAC) 的双重抑制剂,其对 LSD1 的 Ki(inact) 值为 110 nM,对 HDAC1 的 IC50 值为 147 nM。
Fimepinostat (CUDC-907) 有效抑制 I 型 PI3K 及 I 和 II 型 HDAC 酶,cc彩球网于 PI3Kα/PI3Kβ/PI3Kδ 和 HDAC1/HDAC2/HDAC3/HDAC10 ,IC50 分别为 19/54/39 nM 和 1.7/5.0/1.8/2.8 nM。
1-Naphthohydroxamic acid (Compound 2) 是一种有效的,选择性的 HDAC8 抑制剂,IC50 为 14 μM。1-Naphthohydroxamic acid 对 HDAC8 的选择性高于 I 类 HDAC1 和 II 类 HDAC6 (IC50 >100 μM)。1-Naphthohydroxamic acid 不会增加整体组蛋白 H4 的乙酰化,也不会降低总细胞内 HDAC 的活性。1-Naphthohydroxamic acid 可诱导微管蛋白乙酰化。
DKFZ-748是一种选择性HDAC10抑制剂(pIC50=7.66),具有抗肿瘤活性[1]。
COX-2-IN-23(化合物A10)是一种有效的乙酰胆碱酯酶和HDAC抑制剂,IC50值分别为0.12和0.23 nM。COX-2-IN-23具有抗氧化活性和金属螯合特性。COX-2-IN-23可用于阿尔茨海默病研究[1]。
JMJD3/HDAC-IN-1 (compound A5b) 是一种双重抑制剂,靶向含 Jumonji 结构域蛋白去甲基酶 3 (JMJD3) 和组蛋白去乙酰化酶 (HADC1,IC50=16 nM)。JMJD3/HDAC-IN-1 促进组蛋白 H3K27 的高甲基化和 H3K9 的高乙酰化,还裂解 caspase-7 和 PARP 诱导细胞凋亡 (apoptosis)。JMJD3/HDAC-IN-1 可有效抑制癌细胞克隆、迁移和侵袭。
CRA-026440盐酸盐是一种有效的广谱HDAC(HDAC)抑制剂。针对重组HDAC同工酶HDAC1、HDAC2、HDAC3、HDAC6、HDAC8和HDAC10的Ki值分别为4nM、14nM、11nM、15nM、7nM和20nM。CRA-026440盐酸盐显示出抗肿瘤和抗血管生成活性[1]。
HDAC-IN-59 (compound 13a) 是一种有效的组蛋白脱乙酰酶 (HDAC) 抑制剂。HDAC-IN-59 可以促进细胞内 ROS 的产生,引起 DNA 损伤,阻断细胞周期 G2/M 期,并激活线粒体相关的凋亡途径诱导细胞凋亡。
HDAC6-IN-11(化合物9)是一种选择性HDAC6抑制剂,IC50值为20.7nM。HDAC6-IN-11的选择性是HDAC和其他亚型的300倍以上。HDAC6-IN-11显示出对癌细胞的抗增殖活性[1]。
1-丙氨酸衣原体蛋白是一种环状四肽,是一种有效的HDAC抑制剂(IC50=6.4nm)。1-丙氨酸衣原体素诱导MIA PaCa-2细胞G2/M细胞周期阻滞和凋亡[1]。
HDAC8-IN-3(化合物P19)是一种有效的HDAC8抑制剂,IC50值为9.3μM,并产生热稳定性。HDAC8-IN-3具有细胞毒性并诱导白血病细胞系的凋亡[1]。
HDAC-IN-50是一种有效的口服活性细胞凋亡<0/b>和细胞凋亡<1/b>双重抑制剂,FGFR1、FGFR2、FGFR3、FGFR4、HDAC1、HDAC2、HDAC6、HDAC8的IC50值分别为0.18、1.2、0.46、1.4、1.3、1.6、2.6、13nM。HDAC-IN-50诱导G0/G1期细胞凋亡和细胞周期阻滞。HDAC-IN-50降低pFGFR1的表达,>细胞凋亡<2pSTAT3。HDAC-IN-50显示出抗肿瘤活性[1]。